Total Synthesis of Nephilatoxin-8 (NPTX-8), a New Neurotoxin of Joro Spider (Nephila clavata)

Masaaki MIYASHITA,* Masayuki MATSUSHITA, Hideaki SATO,
Takashi TOKI,[†] Terumi NAKAJIMA,^{††} and Hiroshi IRIE
Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852
[†]Research Center, Daicel Chemical Industries, LTD., Himeji 671-12
^{††}Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113

The first synthesis of Nephilatoxin-8 (NPTX-8), a new neurotoxin of Joro spider (*Nephila clavata*), has been achieved by employing two key azide intermediates for the incorporation of the characteristic polyamines of the toxin, cadaverine and spermidine.

Spider toxins such as NSTX-3,¹) JSTX-3,¹) and Nephilatoxins (NPTXs) ²) have been demonstrated to be potent and specific blockers of glutaminergic neuromuscular transmission and are rapidly emerging as unique tools for understanding excitatory amino acid transmission and related pharmacology.²⁻⁴) Limited quantities have impeded, however, their pharmacological evaluation and ongoing biological studies. We recently reported the first and efficient synthesis of NPTXs, NPTX-9 and 11,⁵) and NPTX-10 and 12 ⁶) by the use of key azide intermediates enabling the effective incorporation of the characteristic polyamine units, cadaverine and putreanine, and opened the practical synthetic routes for these spider toxins.⁷) We now wish to report the first synthesis of NPTX-8, which is structurally the third type of Nephilatoxin possessing cadaverine (1,5-diaminopentane) and spermidine (N-(3-aminopropyl)-1,4-diaminobutane) as the polyamine units, based on the extended *azide strategy*. NPTX-8 is structurally similar to JSTX-3 ¹) and consists of four components, i. e., indole-3-acetic acid, asparagine, cadaverine, and 9-(3-aminopropyl)putreanine, in which the terminating aromatic moiety is different from that of JSTX-3 having a 2,4-dihydroxyphenylacetyl residue. We successfully synthesized NPTX-8 by employing two key azide intermediates for the incorporation of two characteristic polyamines of the toxin, cadaverine and spermidine.

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

NPTX-8

Methyl 12-azido-bis-N-Boc-4,9-diazadodecanoate (4), the novel 9-(3-aminopropyl)putreanine equivalent, was elaborated from 1,4-diaminobutane (1) by a five-step reaction sequence in 41% overall yield (Scheme 1):

1) conjugate addition of the diamine to methyl acrylate; 2) protection of the amino groups; 3) selective reduction of one ester group; 4) mesylation; 5) substitution with NaN3. The corresponding N-hydroxysuccinimide ester 5 was readily derived from 4 by alkaline hydrolysis and subsequent esterification with N-hydroxysuccinimide and DCC in nearly quantitative yield.

Reagents: a. CH_2 = $CHCO_2Me$, 0 °C - r. t., 2 h; b. $(Boc)_2O$, aq. Na_2CO_3 , r. t. 12 h; c. $LiBH_4$, aq. THF (THF / H_2O = 50 : 1 (V_V)), r. t. 6 h; d. MsCl, pyridine, CH_2Cl_2 , 0 °C, 12 h; e. NaN_3 , DMF, r. t. 12 h; f. 1 mol dm⁻³ NaOH, EtOH, r. t. 2 h; HONSu, HONSu,

Synthesis of NPTX-8 was carried out by coupling of the common left half-segment 6, which was used for the synthesis of NPTXs-9-12,5,6) with the key 9-(3-aminopropyl)putreanine equivalent 5 (Scheme 2).

Reagents: a. 10% Pd-C, H_2 (1 atm), MeOH, 2 h; b. 5, TEA, DMF, r. t. 12 h; c. TFA, CH_2Cl_2 , r. t. 3 h; d. 10% Pd-C, H_2 (1 atm), EtOH, 2 h.

Scheme 2.

Thus catalytic hydrogenation of the azide 6 gave the amine 7, which was subjected to the coupling reaction with the active ester 5 in DMF in the presence of triethylamine (TEA) to afford the protected NPTX-8 derivative (8) in 71% overall yield after purification by silica gel flash chromatography. Subsequent removal of the two Boc groups with TFA followed by catalytic hydrogenation of the azido group over Pd-C in EtOH furnished NPTX-8 as TFA salts. The product was purified by HPLC using a Tosoh TSK-GEL ODS-120T column (4.6 x 250 mm, 15% acetonitrile containing 0.1% TFA, 1 ml/min, 42 min) whose retention time coincided with that of natural NPTX-8. In addition, all the spectral data of the synthetic compound (400 MHz ¹H-NMR, ¹³C-NMR, FD-MS 572 (M+)) were in agreement with the proposed structure.⁸⁾ The biological evaluations of the synthetic compound including histamine release activity from rat peritoneal mast cells were also conformed to those of natural toxin.

The present synthesis provides a new and practical route for the synthesis of spider toxins which contain cadaverine and spermidine as polyamine units, and also demonstrates the synthetic potential of *the azide strategy* as well as the previous ones. ^{5,6}) Further extensions of the methodology to other spider toxins are in progress in our laboratory.

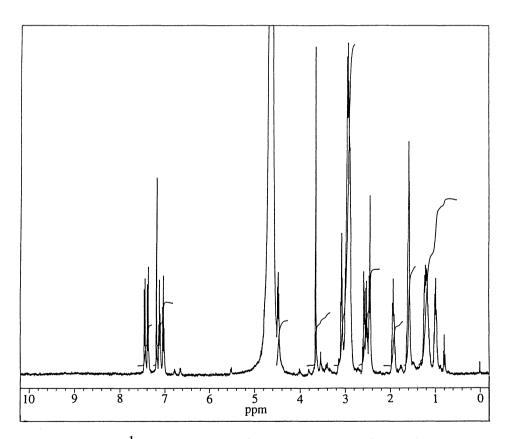


Fig. 1. 400 MHz $^1\text{H-NMR}$ spectrum of the synthetic NPTX-8 in D2O (measured using a JEOL JNM GX-400 spectrometer).

This work was supported by Grants-in-Aid for Scientific Research (Nos. 03640476 and 04640530), and a Grant-in-Aid for Developmental Scientific Research (No. 04557100) from the Ministry of Education, Science

and Culture of Japan. We are also grateful to Tokyo Biochemical Research Foundation for their financial support.

References

- 1) Y. Aramaki, T. Yasuhara, T. Higashijima, M. Yoshioka, A. Miwa, N. Kawai, and T. Nakajima, *Proc. Jpn. Acad.*, **62** (B), 359 (1986).
- 2) T. Toki, T. Yasuhara, Y. Aramaki, N. Kawai, and T. Nakajima, *Biomedical Res.*, **9**, 75 (1988); T. Toki, T. Yasuhara, Y. Aramaki, K. Osawa, A. Miwa, N. Kawai, and T. Nakajima, *ibid.*, **9**, 421 (1988).
- 3) N. Kawai, A. Miwa, M. Saito, H. Pan-Hou, and M. Yoshioka, *J. Phsiol.*, *Paris*, **79**, 228 (1984); H. Pan-Hou and Y. Suda, *Brain Res.*, **418**, 198 (1987); T. Nishizaki and Y. Okada, *ibid.*, **452**, 11 (1988); H. Jackson and P. N. R. Usherwood, *Trends Neurosci.*, **11**, 278 (1988).
- 4) N. Kawai, A. Miwa, and T. Abe, *Brain Res.*, **247**, 169 (1982); T. Abe, N. Kawai, and A. Miwa, *J. Physiol.*, **339**, 243 (1983); N. Kawai, S. Yamagishi, M. Saito, and K. Furuya, *Brain Res.*, **278**, 346 (1983); A. Miwa, N. Kawai, M. Saito, H. Pan-Hou, and M. Yoshioka, *J. Neurophsiol.*, **58**, 319 (1987).
- 5) M. Miyashita, H. Sato, A. Yoshikoshi, T. Toki, M. Matsushita, H. Irie, T. Yanami, Y. Kikuchi, C. Takasaki, and T. Nakajima, *Tetrahedron Lett.*, 33, 2833 (1992).
- 6) M. Miyashita, H. Sato, M. Matsushita, Y. Kusumegi, T. Toki, A. Yoshikoshi, T. Yanami, Y. Kikuchi, C. Takasaki, T. Nakajima, and H. Irie, *Tetrahedron Lett.*, **33**, 2837 (1992).
- 7) Synthesis of other spider toxins: NSTX-3: T. Teshima, T. Wakamiya, Y. Aramaki, T. Nakajima, N. Kawai, and T. Shiba, *Tetrahedron Lett.*, 28, 3509 (1987); D. M. Nason, V. J. Jasys, P. R. Kelbaugh, D. Phillips, N. A. Saccomano, and R. A. Volkman, *ibid.*, 30, 2337 (1989); T. Teshima, T. Matsumoto, M. Miyagawa, T. Wakamiya, T. Shiba, N. Narai, M. Yoshioka, and T. Nakajima, *Tetrahedron*, 46, 3819 (1990); JSTX-3: Y. Hashimoto, Y. Endo, K. Shudo, Y. Aramaki, N. Kawai, and T. Nakajima, *Tetrahedron Lett.*, 28, 3511 (1987); Argiotoxin: T. L. Shih, J. R-Sanchez, and H. Mrozik, *ibid.*, 28, 6015 (1987); M. E. Adams, R. L. Carney, F. E. Enderlin, E. T. Fu, M. A. Jarema, J. P. Li, C. A. Miller, D. A. Schooley, M. J. Shapiro, and V. J. Venema, *Biochem. Biophys. Res. Commun.*, 148, 678 (1987); V. J. Jasys, P. R. Kelbaugh, D. M. Nason, D. Phillips, N. A. Saccomano, and R. A. Volkamann, *Tetrahedron Lett.*, 29, 6223 (1988); Clavamine: T. Teshima, T. Matsumoto, M. Miyagawa, T. Wakamiya, T. Shiba, N. Narai, M. Yoshioka, T. Nakajima, and N. Kawai, *ibid.*, 46, 3819 (1990); Agelenopsis aperta: V. J. Jasys, P. R. Kelbaugh, D. M. Nason, D. Phillips, K. J. Rosnack, N. A. Saccomano, J. G. Stroh, and R. A. Volkamann, *J. Am. Chem. Soc.*, 112, 6696 (1990).
- 8) NMR spectrum of natural NPTX-8 has not been measured yet owing to its limited quantity.

(Received February 1, 1993)